

Analysis of Air Operations During DESERT SHIELD and DESERT STORM

LT Christopher Slattery, USN

LT Scott Wathen, USN

LT Krist Norlander, USNR

Introduction

- Extended air defense simulation (EADSIM)
- Hybrid Monte Carlo/deterministic simulation
 - Army missile command (MICOM 1980s)
 - Evaluate alternative command & control
 - C³ capabilities of systems modeled accurately
 - Unique aspect of EADSIM

Outline

- Background/atmosphere
- Development of model prototype
- Using the model
- •Results/analysis
- **Summary**

- Initial conceptual study nearly complete
 - Alternative force structures
 - Detect and monitor drug smugglers
 - Research for a more complete database just starting
- ·August 1990, Iraqi tanks roll south
- Phone at USAF studies & analysis agency (AFSAA)
 rings
 - Air force director of plans (XOX) wants an attrition estimate

- •The response? A three pronged approach
 - First prong A quick look
 - Previous AFSAA study effort
 - Top level analysis methods (SWAG)
 - Objective?
 - ? Answer to XOX within one week

- •The response? A three pronged approach
 - Second prong TAC THUNDER
 - Check long term attrition levels (30+ days)

- •The response? A three pronged approach
 - Third prong EADSIM (unproven system)
 - Detailed mission level study
 - SAM vs. Fighter
 - Fighter vs. Fighter
 - Effects of centralized C²
 - Graphic playback of the results
 - Watch the battle unfold

•First step

- Identify and determine how to represent game pieces and their interrelationships
 - How each game piece interacts with its commanders and subordinates

Second step

- Make sure you have all the necessary pieces you need to build the scenario
 - Element
 - System
 - Platform
 - Laydown
 - Scenario

Element

- The lowest level EADSIM player piece
 - Seven types
 - Aircraft
 - ? Communications devices & protocols
 - ? Jammers
 - ? Rule sets
 - ? Sensors & weapons

Aircraft element definition

- User defined aircraft flight characteristics
 - Must provide a unique name to each definition
 - Three degrees of freedom flight dynamics

Sensor element

- User defines a particular sensor (APG-70)
 - Unique name per sensor type
 - User provides all necessary parameters to describe the sensor

Sensor element

- Six types are modeled in EADSIM
 - Radar
 - SIGINT, IMINT, HUMINT
 - Launch detector
 - Radar warning receiver
- Required parameters vary by system

Weapons element

- Specific weapons defined here (SA-2, Mk 82, etc...)
 - Parameters include:
 - How it is carried
 - ? Targets it is effective against
 - ? Pk value
 - ? Default composite
 - ? Target specific

Rule-Set element

- Rule-set class (framework)
- Rule-set characteristics
 - How many targets can be tracked, etc...
- Rule-set phases
 - How long it takes to initiate a particular action
 - Exact time taken to complete a phase is determined by a Monte Carlo draw at run time

Systems

- Made up of elements
 - F-14
 - **-** AWG-9
 - **-** AIM-9
 - UHF Radio

•Platform – Unique names

- Deployed units
 - Tomcat 01
 - Tomcat 02
 - Prowler 01
 - Hornet 01
 - Hornet 02

Last step in building a scenario

- Communication nets
 - Series of nets between 2 or more platforms
 - Must have compatible gear
 - Seven types are modeled
 - Landline, duplex, broadcast, etc...
- Areas of interest (MEZ, FEZ, AOR, etc....

Development of Prototype EADSIM Modification

- Extensive research to ensure accurate depiction of the equipment.
- •Model Iraqi KARI Command and Control system
 - Joint intelligence agencies (Joint Intelligence Center)

Development of Prototype Shortfalls

• EADSIM User Interface:

- Laying site locations and building C3 network made difficult by EADSIM's non-user friendly interface.
- •Simulating Air Operations in a realistic manner: Outside software engineer contracted.
 - Realistic fighter reaction
 - Time saving input features (e.g. Lat/Long converter)

Development of Prototype Beyond On-site Fixes

EMCON - "Major fidelity limitation"

- Radars modeled as continuously radiating
- Obstructed the modeling of a "truly <u>effective</u> integrated air defense system (IADS)"
- Remains a system drawback

Perfect correlation of targets

- Not obtainable in the model
- Considered worst-case situation
- "Acceptable limitation"

Development of Prototype Beyond On-site Fixes

•Average single-shot P_k's

- EADSIM does not consider altitude, speed, or aspect angle in P_k
- Consider worst-case situation
- "Acceptable limitation"

Development of Prototype Model the Allied Attack Plan

Available Information for modeling

- Available Master Attack Plan was "sketchy at best"
 - Targets, time over target, number and type of aircraft....
- EADSIM required much more detailed information
 - Input required (target name, location, actual route of flight attacking aircraft, target weapon, employment tactics, tanker refueling routes, defensive aircraft orbit locations, etc.
- Simplifications would be required.

Development of Prototype Model the Allied Attack Plan

•Simplifications – Iraqi forces

- Iraqi air force would not be a factor during the opening stages of the attack.
- Aim fire AAA, while initially not considered a factor, was added in November, barrage fire AAA was never modeled.

Modeling Fuel Consumption

- EADSIMs capability "marginal at best"
- Started and stopped attackers at their AAR's (air refueling drop-off points in northern Saudi Arabia)

Development of Prototype Model the Allied Attack Plan

Modeling Fuel Consumption

- Assumed attackers, had enough fuel to accomplish scheduled mission (viewed as a reasonable assumption)
- Inaccurate fuel consumption had a larger impact on air to air engagements. (never corrected)

Operational Losses

- Assumed no operational losses within the attack plan. (If 16 planes took off, 16 planes attacked)
- Very unlikely in real-world operations.

Executing the Simulation Prototype Observations

- Attack scenario choreographed against Iraqi target set.
- •Objective: estimate of both Blue and Red losses.
 - Engagement outcomes probabilistic, multiple runs required
 - Matched initial estimate of AFSAA's analysis
- Passed the "gut check"
 - Graphical output of simulation observed by expert tacticians

Executing the Simulation Prototype Observations

- EADSIM's message:
 - Highest loss rates on packages attacking heavily defended areas with insufficient SAM suppression support. — any aviator could have told you that!
 - This acted as the model's validation.
 - Additionally simulation runs identified the most lethal SAM sites based on targeting strategies.
- Offered the ability to run varying force levels, target packages and strategies.

Why Us?

AFSAA recommended us to CENTAF Special Projects

- AFSAA
 - EADSIM has "[excellent] use in developing and evaluating air operations...[including]...SEAD'hot spots'....vulnerability in Iraqi IADS..."
- CENTAF
 - "...accept your offer...soonest..."

The Team

AFIT Trained Analyst and F-111 Squadron Commander

Lieutenant Colonel Mike Carpenter

EADSIM Analysis Team Leader and F4 WSO

Major F. T. Case

EADSIM Threat Expert, Intel Analyst, and NPS Grad

Major Steve Satchwell

EADSIM Expert, AFIT Grad and AWACS Weapons Controller

Captain Mike Burnes

Initial Tasks

- Capture Allied mission data and convert to EADSIM format
- Develop forms and spread sheets for data collection
- Rapidly implement EOB, MOB, ATO changes as they occur
- Generate appropriate threat IADS
 - Took two weeks
- Initial run for 3 hours took 8 sim hours

Stabilization

- Multiple runs required for stabilized results
- 10 runs seemed to provide stabilized results

Each "laydown" was time intensive

Scenario Laydowns

- Each wave of attack was essentially a "laydown"
- Multiple runs of each laydown would provide inputs for next laydown
 - Some scenarios might have multiple laydowns to allow for uncertainty

Initial Observation

Hot Spots

- A-6s being lost downtown
 - Analysis: poor idea to send low-stealth
- F-15Es lost at SCUD site
 - Analysis: change approach pattern
- Area requiring more SEAD assets
 - Analysis: when avail direct SEAD to area

Verification and Validation

Major General May asked:

"...why we thought this model was any good."

Our response:

- "...it passed our gut check!"
 - The reality was that we had "thoroughly researched the inputs and we've watched the outputs. They make sense."

DESERT SHIELD Analysis

Determine problem areas with AAR

- Choreograph planned flows
- Define block of airspace
- Count A/C in blocks over specific increments

Software mods required

Use WAN to rapidly receive mods

DESERT SHIELD Analysis

Other Aids

Effects of changing package mix

DESERT STORM Analysis

Real-time action planning appeared useless

Restricted to side-tasks

- Regional activities
- Analyze specific A/C losses
 - F-15E lost to ???? → SAM
- Analyze tactical and operational concepts

Intel system delays proved difficult

DESERT STORM Analysis

Irrational action by Iraqi NOT modeled

- Missiles in unguided mode
- No shots inside kill envelope

Unexpected realization

A/C do NOT fly exactly on planned route

Where Are We Now!

- HLA compliant
- Heavily scrutinized by BMDO
- Structured training courses available
- Continuously updated
- Enhanced 3D graphics
- Multiple interfaces
 - VIC, CBS, BRAWLER, etc.
- Multi-PC platforms

Summary

Weak Links

- Did not model tactical EMCON
- Target correlation was perfect
 - This provided worst case scenario
- Probability of Kill did not account for aspect
- A/C fuel consumption model was poor
 - Utilized multiple laydowns
- No operational losses in attack plan
 - All sorties filled

Summary

Future requirements

- Automated tools must be fused with model
- All levels of command can benefit from models

Lesson Learned

 "...[sim] models do have potential for effective use in an operational environment."

Resources

- EADSIM Web Site: www.eadsim.com
- EADSIM Executive Summary (PDF format)

Questions

- EADSIM is an Air Force combat model designed for long-term campaigns. (T/F)
- The operational losses portion of the EADSIM model analysis was a key factor of EADSIM success during DESERT SHIELD. (T/F)
- Why wasn't EADSIM utilized for real-time strike planning during DESERT STORM?

Questions?

